Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Physiol Genomics ; 56(2): 167-178, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047311

RESUMO

Heart failure is a major clinical problem, with treatments involving medication, devices, and emerging neuromodulation therapies such as vagus nerve stimulation (VNS). Considering the ongoing interest in using VNS to treat cardiovascular disease, it is important to understand the genetic and molecular changes developing in the heart in response to this form of autonomic neuromodulation. This experimental animal (rat) study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity using an optogenetic approach. Vagal preganglionic neurons in the dorsal motor nucleus of the vagus nerve were genetically targeted to express light-sensitive chimeric channelrhodopsin variant ChIEF and stimulated using light. RNA sequencing of the left ventricular myocardium identified 294 differentially expressed genes (false discovery rate < 0.05). Qiagen Ingenuity Pathway Analysis (IPA) highlighted 118 canonical pathways that were significantly modulated by vagal activity, of which 14 had a z score of ≥2/≤-2, including EIF-2, IL-2, integrin, and NFAT-regulated cardiac hypertrophy. IPA revealed the effect of efferent vagus stimulation on protein synthesis, autophagy, fibrosis, autonomic signaling, inflammation, and hypertrophy. IPA further predicted that the identified differentially expressed genes were the targets of 50 upstream regulators, including transcription factors (e.g., MYC and NRF1) and microRNAs (e.g., miR-335-3p and miR-338-3p). These data demonstrate that the vagus nerve has a major impact on the myocardial expression of genes involved in the regulation of key biological pathways. The transcriptional response of the ventricular myocardium induced by stimulation of vagal efferents is consistent with the beneficial effect of maintained/increased vagal activity on the heart.NEW & NOTEWORTHY This experimental animal study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity. Vagal stimulation induced significant transcriptional changes in the heart involving the pathways controlling autonomic signaling, inflammation, fibrosis, and hypertrophy. This study provides the first direct evidence that myocardial gene expression is modulated by the activity of the autonomic nervous system.


Assuntos
MicroRNAs , Estimulação do Nervo Vago , Ratos , Animais , Frequência Cardíaca , Coração , MicroRNAs/genética , Hipertrofia , Inflamação , Fibrose
2.
Sci Rep ; 13(1): 18966, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923787

RESUMO

Heart rate variability (HRV) is a cardiac autonomic marker with predictive value in cardiac patients. Ultra-short HRV (usHRV) can be measured at scale using standard and wearable ECGs, but its association with cardiovascular events in the general population is undetermined. We aimed to validate usHRV measured using ≤ 15-s ECGs (using RMSSD, SDSD and PHF indices) and investigate its association with atrial fibrillation, major adverse cardiac events, stroke and mortality in individuals without cardiovascular disease. In the National Survey for Health and Development (n = 1337 participants), agreement between 15-s and 6-min HRV, assessed with correlation analysis and Bland-Altman plots, was very good for RMSSD and SDSD and good for PHF. In the UK Biobank (n = 51,628 participants, 64% male, median age 58), after a median follow-up of 11.5 (11.4-11.7) years, incidence of outcomes ranged between 1.7% and 4.3%. Non-linear Cox regression analysis showed that reduced usHRV from 15-, 10- and 5-s ECGs was associated with all outcomes. Individuals with low usHRV (< 20th percentile) had hazard ratios for outcomes between 1.16 and 1.29, p < 0.05, with respect to the reference group. In conclusion, usHRV from ≤ 15-s ECGs correlates with standard short-term HRV and predicts increased risk of cardiovascular events in a large population-representative cohort.


Assuntos
Doenças Cardiovasculares , Eletrocardiografia , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Frequência Cardíaca/fisiologia , Eletrocardiografia/métodos , Sistema Nervoso Autônomo/fisiologia , Doenças Cardiovasculares/epidemiologia , Modelos de Riscos Proporcionais
3.
Circulation ; 148(24): 1932-1944, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855144

RESUMO

BACKGROUND: The consequences of exercise-induced premature ventricular contractions (PVCs) in asymptomatic individuals remain unclear. This study aimed to assess the association between PVC burdens during submaximal exercise and major adverse cardiovascular events (MI/HF/LTVA: myocardial infarction [MI], heart failure [HF], and life-threatening ventricular arrhythmia [LTVA]), and all-cause mortality. Additional end points were MI, LTVA, HF, and cardiovascular mortality. METHODS: A neural network was developed to count PVCs from ECGs recorded during exercise (6 minutes) and recovery (1 minute) in 48 315 asymptomatic participants from UK Biobank. Associations were estimated using multivariable Cox proportional hazard models. Explorative studies were conducted in subgroups with cardiovascular magnetic resonance imaging data (n=6290) and NT-proBNP (N-terminal Pro-B-type natriuretic peptide) levels (n=4607) to examine whether PVC burden was associated with subclinical cardiomyopathy. RESULTS: Mean age was 56.8±8.2 years; 51.1% of the participants were female; and median follow-up was 12.6 years. Low PVC counts during exercise and recovery were both associated with MI/HF/LTVA risk, independently of clinical factors: adjusted hazard ratio (HR), 1.2 (1-5 exercise PVCs, P<0.001) and HR, 1.3 (1-5 recovery PVCs, P<0.001). Risks were higher with increasing PVC count: HR, 1.8 (>20 exercise PVCs, P<0.001) and HR, 1.6 (>5 recovery PVCs, P<0.001). A similar trend was observed for all-cause mortality, although associations were only significant for high PVC burdens: HRs, 1.6 (>20 exercise PVCs, P<0.001) and 1.5 (>5 recovery PVCs, P<0.001). Complex PVC rhythms were associated with higher risk compared with PVC count alone. PVCs were also associated with incident HF, LTVA, and cardiovascular mortality, but not MI. In the explorative studies, high PVC burden was associated with larger left ventricular volumes, lower ejection fraction, and higher levels of NT-proBNP compared with participants without PVCs. CONCLUSIONS: In this cohort of middle-aged and older adults, PVC count during submaximal exercise and recovery were both associated with MI/HF/LTVA, all-cause mortality, HF, LTVAs, and cardiovascular mortality, independent of clinical and exercise test factors, indicating an incremental increase in risk as PVC count rises. Complex PVC rhythms were associated with higher risk compared with PVC count alone. Underlying mechanisms may include the presence of subclinical cardiomyopathy.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Infarto do Miocárdio , Complexos Ventriculares Prematuros , Pessoa de Meia-Idade , Humanos , Feminino , Idoso , Masculino , Prognóstico , Complexos Ventriculares Prematuros/complicações , Bancos de Espécimes Biológicos , Insuficiência Cardíaca/complicações , Cardiomiopatias/complicações , Infarto do Miocárdio/complicações
5.
Circ Arrhythm Electrophysiol ; 16(9): e011870, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37646176

RESUMO

BACKGROUND: Hypoxia-ischemia predisposes to atrial arrhythmia. Atrial ATP-sensitive potassium channel (KATP) modulation during hypoxia has not been explored. We investigated the effects of hypoxia on atrial electrophysiology in mice with global deletion of KATP pore-forming subunits. METHODS: Whole heart KATP RNA expression was probed. Whole-cell KATP current and action potentials were recorded in isolated wild-type (WT), Kir6.1 global knockout (6.1-gKO), and Kir6.2 global knockout (6.2-gKO) murine atrial myocytes. Langendorff-perfused hearts were assessed for atrial effective refractory period (ERP), conduction velocity, wavefront path length (WFPL), and arrhymogenicity under normoxia/hypoxia using a microelectrode array and programmed electrical stimulation. Heart histology was assessed. RESULTS: Expression patterns were essentially identical for all KATP subunit RNA across human heart, whereas in mouse, Kir6.1 and SUR2 (sulphonylurea receptor subunit) were higher in ventricle than atrium, and Kir6.2 and SUR1 were higher in atrium. Compared with WT, 6.2-gKO atrial myocytes had reduced tolbutamide-sensitive current and action potentials were more depolarized with slower upstroke and reduced peak amplitude. Action potential duration was prolonged in 6.1-gKO atrial myocytes, absent of changes in other ion channel gene expression or atrial myocyte hypertrophy. In Langendorff-perfused hearts, baseline atrial ERP was prolonged and conduction velocity reduced in both KATP knockout mice compared with WT, without histological fibrosis. Compared with baseline, hypoxia led to conduction velocity slowing, stable ERP, and WFPL shortening in WT and 6.1-gKO hearts, whereas WFPL was stable in 6.2-gKO hearts due to ERP prolongation with conduction velocity slowing. Tolbutamide reversed hypoxia-induced WFPL shortening in WT and 6.1-gKO hearts through ERP prolongation. Atrial tachyarrhythmias inducible with programmed electrical stimulation during hypoxia in WT and 6.1-gKO mice correlated with WFPL shortening. Spontaneous arrhythmia was not seen. CONCLUSIONS: KATP block/absence leads to cellular and tissue level atrial electrophysiological modification. Kir6.2 global knockout prevents hypoxia-induced atrial WFPL shortening and atrial arrhythmogenicity to programmed electrical stimulation. This mechanism could be explored translationally to treat ischemically driven atrial arrhythmia.


Assuntos
Fibrilação Atrial , Canais KATP , Humanos , Animais , Camundongos , Canais KATP/genética , Fibrilação Atrial/genética , Tolbutamida , Taquicardia , Átrios do Coração , Hipóxia/complicações , Hipóxia/genética , Trifosfato de Adenosina
6.
Cardiovasc Res ; 119(13): 2329-2341, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37516977

RESUMO

AIMS: The brain controls the heart by dynamic recruitment and withdrawal of cardiac parasympathetic (vagal) and sympathetic activity. Autonomic control is essential for the development of cardiovascular responses during exercise, however, the patterns of changes in the activity of the two autonomic limbs, and their functional interactions in orchestrating physiological responses during exercise, are not fully understood. The aim of this study was to characterize changes in vagal parasympathetic drive in response to exercise and exercise training by directly recording the electrical activity of vagal preganglionic neurons in experimental animals (rats). METHODS AND RESULTS: Single unit recordings were made using carbon-fibre microelectrodes from the populations of vagal preganglionic neurons of the nucleus ambiguus (NA) and the dorsal vagal motor nucleus of the brainstem. It was found that (i) vagal preganglionic neurons of the NA and the dorsal vagal motor nucleus are strongly activated during bouts of acute exercise, and (ii) exercise training markedly increases the resting activity of both populations of vagal preganglionic neurons and augments the excitatory responses of NA neurons during exercise. CONCLUSIONS: These data show that central vagal drive increases during exercise and provide the first direct neurophysiological evidence that exercise training increases vagal tone. The data argue against the notion of exercise-induced central vagal withdrawal during exercise. We propose that robust increases in the activity of vagal preganglionic neurons during bouts of exercise underlie activity-dependent plasticity, leading to higher resting vagal tone that confers multiple health benefits associated with regular exercise.


Assuntos
Fibras Autônomas Pré-Ganglionares , Nervo Vago , Ratos , Animais , Fibras Autônomas Pré-Ganglionares/fisiologia , Nervo Vago/fisiologia , Coração/fisiologia , Neurônios , Bulbo
7.
Nat Commun ; 14(1): 1722, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012244

RESUMO

Cardiogenesis relies on the precise spatiotemporal coordination of multiple progenitor populations. Understanding the specification and differentiation of these distinct progenitor pools during human embryonic development is crucial for advancing our knowledge of congenital cardiac malformations and designing new regenerative therapies. By combining genetic labelling, single-cell transcriptomics, and ex vivo human-mouse embryonic chimeras we uncovered that modulation of retinoic acid signaling instructs human pluripotent stem cells to form heart field-specific progenitors with distinct fate potentials. In addition to the classical first and second heart fields, we observed the appearance of juxta-cardiac field progenitors giving rise to both myocardial and epicardial cells. Applying these findings to stem-cell based disease modelling we identified specific transcriptional dysregulation in first and second heart field progenitors derived from stem cells of patients with hypoplastic left heart syndrome. This highlights the suitability of our in vitro differentiation platform for studying human cardiac development and disease.


Assuntos
Células-Tronco Pluripotentes , Tretinoína , Humanos , Animais , Camundongos , Tretinoína/farmacologia , Coração , Miocárdio , Diferenciação Celular , Miócitos Cardíacos
8.
Eur Heart J Digit Health ; 4(2): 112-118, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36974269

RESUMO

Aims: Wearable devices are transforming the electrocardiogram (ECG) into a ubiquitous medical test. This study assesses the association between premature ventricular and atrial contractions (PVCs and PACs) detected on wearable-format ECGs (15 s single lead) and cardiovascular outcomes in individuals without cardiovascular disease (CVD). Methods and results: Premature atrial contractions and PVCs were identified in 15 s single-lead ECGs from N = 54 016 UK Biobank participants (median age, interquartile range, age 58, 50-63 years, 54% female). Cox regression models adjusted for traditional risk factors were used to determine associations with atrial fibrillation (AF), heart failure (HF), myocardial infarction (MI), stroke, life-threatening ventricular arrhythmias (LTVAs), and mortality over a period of 11.5 (11.4-11.7) years. The strongest associations were found between PVCs (prevalence 2.2%) and HF (hazard ratio, HR, 95% confidence interval = 2.09, 1.58-2.78) and between PACs (prevalence 1.9%) and AF (HR = 2.52, 2.11-3.01), with shorter prematurity further increasing risk. Premature ventricular contractions and PACs were also associated with LTVA (P < 0.05). Associations with MI, stroke, and mortality were significant only in unadjusted models. In a separate UK Biobank sub-study sample [UKB-2, N = 29,324, age 64, 58-60 years, 54% female, follow-up 3.5 (2.6-4.8) years] used for independent validation, after adjusting for risk factors, PACs were associated with AF (HR = 1.80, 1.12-2.89) and PVCs with HF (HR = 2.32, 1.28-4.22). Conclusion: In middle-aged individuals without CVD, premature contractions identified in 15 s single-lead ECGs are strongly associated with an increased risk of AF and HF. These data warrant further investigation to assess the role of wearable ECGs for early cardiovascular risk stratification.

9.
Function (Oxf) ; 4(1): zqac055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36540889

RESUMO

We aimed to determine the pathophysiological impact of heart rate (HR) slowing on cardiac function. We have recently developed a murine model in which it is possible to conditionally delete the stimulatory heterotrimeric G-protein (Gαs) in the sinoatrial (SA) node after the addition of tamoxifen using cre-loxP technology. The addition of tamoxifen leads to bradycardia. We used this approach to examine the physiological and pathophysiological effects of HR slowing. We first looked at the impact on exercise performance by running the mice on a treadmill. After the addition of tamoxifen, mice with conditional deletion of Gαs in the SA node ran a shorter distance at a slower speed. Littermate controls preserved their exercise capacity after tamoxifen. Results consistent with impaired cardiac capacity in the mutants were also obtained with a dobutamine echocardiographic stress test. We then examined if HR reduction influenced pathological cardiac hypertrophy using two models: ligation of the left anterior descending coronary artery for myocardial infarction and abdominal aortic banding for hypertensive heart disease. In littermate controls, both procedures resulted in cardiac hypertrophy. However, induction of HR reduction prior to surgical intervention significantly ameliorated the hypertrophy. In order to assess potential protein kinase pathways that may be activated in the left ventricle by relative bradycardia, we used a phospho-antibody array and this revealed selective activation of phosphoinositide-3 kinase. In conclusion, HR reduction protects against pathological cardiac hypertrophy but limits physiological exercise capacity.


Assuntos
Bradicardia , Cardiomegalia , Camundongos , Animais , Frequência Cardíaca , Cardiomegalia/genética , Coração , Tamoxifeno/farmacologia
10.
Sci Rep ; 12(1): 21049, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473917

RESUMO

Mitochondrial dysfunction induced by acute cardiac ischemia-reperfusion (IR), may increase susceptibility to arrhythmias by perturbing energetics, oxidative stress production and calcium homeostasis. Although changes in mitochondrial morphology are known to impact on mitochondrial function, their role in cardiac arrhythmogenesis is not known. To assess action potential duration (APD) in cardiomyocytes from the Mitofusins-1/2 (Mfn1/Mfn2)-double-knockout (Mfn-DKO) compared to wild-type (WT) mice, optical-electrophysiology was conducted. To measure conduction velocity (CV) in atrial and ventricular tissue from the Mfn-DKO and WT mice, at both baseline and following simulated acute IR, multi-electrode array (MEA) was employed. Intracellular localization of connexin-43 (Cx43) at baseline was evaluated by immunohistochemistry, while Cx-43 phosphorylation was assessed by Western-blotting. Mfn-DKO cardiomyocytes demonstrated an increased APD. At baseline, CV was significantly lower in the left ventricle of the Mfn-DKO mice. CV decreased with simulated-ischemia and returned to baseline levels during simulated-reperfusion in WT but not in atria of Mfn-DKO mice. Mfn-DKO hearts displayed increased Cx43 lateralization, although phosphorylation of Cx43 at Ser-368 did not differ. In summary, Mfn-DKO mice have increased APD and reduced CV at baseline and impaired alterations in CV following cardiac IR. These findings were associated with increased Cx43 lateralization, suggesting that the mitofusins may impact on post-MI cardiac-arrhythmogenesis.


Assuntos
Conservadores da Densidade Óssea , Traumatismos Craniocerebrais , Camundongos , Animais , Eletrofisiologia Cardíaca , Isquemia
11.
Neuromuscul Disord ; 32(11-12): 908-922, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36418198

RESUMO

Mutations in the dystrophin gene cause the most common and currently incurable Duchenne muscular dystrophy (DMD) characterized by progressive muscle wasting. Although abnormal Ca2+ handling is a pathological feature of DMD, mechanisms underlying defective Ca2+ homeostasis remain unclear. Here we generate a novel DMD patient-derived pluripotent stem cell (PSC) model of skeletal muscle with an isogenic control using clustered regularly interspaced short palindromic repeat (CRISPR)-mediated precise gene correction. Transcriptome analysis identifies dysregulated gene sets in the absence of dystrophin, including genes involved in Ca2+ handling, excitation-contraction coupling and muscle contraction. Specifically, analysis of intracellular Ca2+ transients and mathematical modeling of Ca2+ dynamics reveal significantly reduced cytosolic Ca2+ clearance rates in DMD-PSC derived myotubes. Pharmacological assays demonstrate Ca2+ flux in myotubes is determined by both intracellular and extracellular sources. DMD-PSC derived myotubes display significantly reduced velocity of contractility. Compared with a non-isogenic wildtype PSC line, these pathophysiological defects could be rescued by CRISPR-mediated precise gene correction. Our study provides new insights into abnormal Ca2+ homeostasis in DMD and suggests that Ca2+ signaling pathways amenable to pharmacological modulation are potential therapeutic targets. Importantly, we have established a human physiology-relevant in vitro model enabling rapid pre-clinical testing of potential therapies for DMD.


Assuntos
Distrofia Muscular de Duchenne , Células-Tronco Pluripotentes , Humanos , Distrofina/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patologia , Músculo Esquelético/patologia , Fibras Musculares Esqueléticas/patologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia
12.
Commun Biol ; 5(1): 1022, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36168044

RESUMO

Dystrophin is the central protein of the dystrophin-glycoprotein complex (DGC) in skeletal and heart muscle cells. Dystrophin connects the actin cytoskeleton to the extracellular matrix (ECM). Severing the link between the ECM and the intracellular cytoskeleton has a devastating impact on the homeostasis of skeletal muscle cells, leading to a range of muscular dystrophies. In addition, the loss of a functional DGC leads to progressive dilated cardiomyopathy and premature death. Dystrophin functions as a molecular spring and the DGC plays a critical role in maintaining the integrity of the sarcolemma. Additionally, evidence is accumulating, linking the DGC to mechanosignalling, albeit this role is still less understood. This review article aims at providing an up-to-date perspective on the DGC and its role in mechanotransduction. We first discuss the intricate relationship between muscle cell mechanics and function, before examining the recent research for a role of the dystrophin glycoprotein complex in mechanotransduction and maintaining the biomechanical integrity of muscle cells. Finally, we review the current literature to map out how DGC signalling intersects with mechanical signalling pathways to highlight potential future points of intervention, especially with a focus on cardiomyopathies.


Assuntos
Distrofina , Mecanotransdução Celular , Glicoproteínas , Fibras Musculares Esqueléticas/metabolismo , Sarcolema/metabolismo
13.
J Am Heart Assoc ; 11(17): e025897, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36036209

RESUMO

Background Early identification of individuals at risk of sudden cardiac death (SCD) remains a major challenge. The ECG is a simple, common test, with potential for large-scale application. We developed and tested the predictive value of a novel index quantifying T-wave morphologic variations with respect to a normal reference (TMV), which only requires one beat and a single-lead ECG. Methods and Results We obtained reference T-wave morphologies from 23 962 participants in the UK Biobank study. With Cox models, we determined the association between TMV and life-threatening ventricular arrhythmia in an independent data set from UK Biobank study without a history of cardiovascular events (N=51 794; median follow-up of 122 months) and SCD in patients with coronary artery disease from ARTEMIS (N=1872; median follow-up of 60 months). In UK Biobank study, 220 (0.4%) individuals developed life-threatening ventricular arrhythmias. TMV was significantly associated with life-threatening ventricular arrhythmias (hazard ratio [HR] of 1.13 per SD increase [95% CI, 1.03-1.24]; P=0.009). In ARTEMIS, 34 (1.8%) individuals reached the primary end point. Patients with TMV ≥5 had an HR for SCD of 2.86 (95% CI, 1.40-5.84; P=0.004) with respect to those with TMV <5, independently from QRS duration, corrected QT interval, and left ventricular ejection fraction. TMV was not significantly associated with death from a cause other than SCD. Conclusions TMV identifies individuals at life-threatening ventricular arrhythmia and SCD risk using a single-beat single-lead ECG, enabling inexpensive, quick, and safe risk assessment in large populations.


Assuntos
Morte Súbita Cardíaca , Função Ventricular Esquerda , Arritmias Cardíacas , Morte Súbita Cardíaca/epidemiologia , Morte Súbita Cardíaca/etiologia , Eletrocardiografia , Humanos , Valor Preditivo dos Testes , Estudos Prospectivos , Fatores de Risco , Volume Sistólico
14.
Circ Genom Precis Med ; 15(5): e003441, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35861959

RESUMO

BACKGROUND: Coronary artery disease (CAD) and major adverse cardiovascular events (MACE) are the leading causes of death in the general population, but risk stratification remains suboptimal. CAD genetic risk scores (GRSs) predict risk independently from clinical tools, like QRISK3. We assessed the added value of GRSs for a variety of cardiovascular traits (CV GRSs) for predicting CAD and MACE and tested their early-life screening potential by comparing against the CAD GRS only. METHODS: We used data from 379 581 participants in the UK Biobank without known cardiovascular conditions (follow-up, 11.3 years; 3.3% CAD cases and 5.2% MACE cases). In a training subset (50%) we built 3 scores: QRISK3; QRISK3 and an established CAD GRS; and QRISK3, the CAD GRS and the CV GRSs. In an independent subset (50%), we evaluated each score's performance using the concordance index, odds ratio and net reclassification index. We then repeated the analyses without considering QRISK3. RESULTS: For CAD, the combination of QRISK3 and the CAD GRS had a better performance than QRISK3 alone (concordance index, 0.766 versus 0.753; odds ratio, 5.47 versus 4.82; net reclassification index, 7.7%). Adding the CV GRSs did not significantly improve risk stratification. When only looking at genetic information, the combination of CV GRSs and the CAD GRS had a better performance than the CAD GRS alone (concordance index, 0.637 versus 0.625; odds ratio, 2.17 versus 2.07; net reclassification index, 3.3%). Similar results were obtained for MACE. CONCLUSIONS: In individuals without known cardiovascular disease, the inclusion of CV GRSs to a clinical tool and an established CAD GRS does not improve CAD or MACE risk stratification. However, their combination only with the CAD GRS increases prediction performance indicating potential use in early-life screening before the advanced development of conventional cardiovascular risk factors.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/epidemiologia , Fatores de Risco , Doenças Cardiovasculares/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Fatores de Risco de Doenças Cardíacas
15.
Front Physiol ; 13: 1033216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589427

RESUMO

There is strong evidence that the omega-3 polyunsaturated fatty acids (n-3 PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have cardioprotective effects. n-3 PUFAs cause vasodilation in hypertensive patients, in part controlled by increased membrane conductance to potassium. As KATP channels play a major role in vascular tone regulation and are involved in hypertension, we aimed to verify whether n-3 PUFA-mediated vasodilation involved the opening of KATP channels. We used a murine model in which the KATP channel pore subunit, Kir6.1, is deleted in vascular smooth muscle. The vasomotor response of preconstricted arteries to physiologically relevant concentrations of DHA and EPA was measured using wire myography, using the channel blocker PNU-37883A. The effect of n-3 PUFAs on potassium currents in wild-type native smooth muscle cells was investigated using whole-cell patch clamping. DHA and EPA induced vasodilation in mouse aorta and mesenteric arteries; relaxations in the aorta were sensitive to KATP blockade with PNU-37883A. Endothelium removal didn't affect relaxation to EPA and caused a small but significant inhibition of relaxation to DHA. In the knock-out model, relaxations to DHA and EPA were unaffected by channel knockdown but were still inhibited by PNU-37883A, indicating that the action of PNU-37883A on relaxation may not reflect inhibition of KATP. In native aortic smooth muscle cells DHA failed to activate KATP currents. We conclude that DHA and EPA cause vasodilation in mouse aorta and mesenteric arteries. Relaxations in blocker-treated arteries from knock-out mice demonstrate that KATP channels are not involved in the n-3 PUFA-induced relaxation.

16.
Cephalalgia ; 42(2): 93-107, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34816764

RESUMO

BACKGROUND: Opening of KATP channels by systemic levcromakalim treatment triggers attacks in migraine patients and hypersensitivity to von Frey stimulation in a mouse model. Blocking of these channels is effective in several preclinical migraine models. It is unknown in what tissue and cell type KATP-induced migraine attacks are initiated and which KATP channel subtype is targeted. METHODS: In mouse models, we administered levcromakalim intracerebroventricularly, intraperitoneally and intraplantarily and compared the nociceptive responses by von Frey and hotplate tests. Mice with a conditional loss-of-function mutation in the smooth muscle KATP channel subunit Kir6.1 were given levcromakalim and GTN and examined with von Frey filaments. Arteries were tested for their ability to dilate ex vivo. mRNA expression, western blotting and immunohistochemical stainings were made to identify relevant target tissue for migraine induced by KATP channel opening. RESULTS: Systemic administration of levcromakalim induced hypersensitivity but central and local administration provided antinociception respectively no effect. The Kir6.1 smooth muscle knockout mouse was protected from both GTN and levcromakalim induced hypersensitivity, and their arteries had impaired dilatory response to the latter. mRNA and protein expression studies showed that trigeminal ganglia did not have significant KATP channel expression of any subtype, whereas brain arteries and dura mater primarily expressed the Kir6.1 + SUR2B subtype. CONCLUSION: Hypersensitivity provoked by GTN and levcromakalim in mice is dependent on functional smooth muscle KATP channels of extracerebral origin. These results suggest a vascular contribution to hypersensitivity induced by migraine triggers.


Assuntos
Canais KATP , Transtornos de Enxaqueca , Trifosfato de Adenosina , Animais , Cromakalim/efeitos adversos , Modelos Animais de Doenças , Humanos , Canais KATP/genética , Canais KATP/metabolismo , Camundongos , Camundongos Knockout , Músculo Liso/metabolismo , RNA Mensageiro
18.
Handb Exp Pharmacol ; 267: 357-378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34247283

RESUMO

ATP-sensitive K+ channels (KATP) are inwardly-rectifying potassium channels, broadly expressed throughout the body. KATP is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels thus playing an important physiological role by coupling cellular metabolism with membrane excitability. The hetero-octameric channel complex is formed of 4 pore-forming inward rectifier Kir6.x subunits (Kir6.1 or Kir6.2) and 4 regulatory sulfonylurea receptor subunits (SUR1, SUR2A, or SUR2B). These subunits can associate in various tissue-specific combinations to form functional KATP channels with distinct electrophysiological and pharmacological properties. KATP channels play many important physiological roles and mutations in channel subunits can result in diseases such as disorders of insulin handling, cardiac arrhythmia, cardiomyopathy, and neurological abnormalities. The tissue-specific expression of KATP channel subunits coupled with their rich and diverse pharmacology makes KATP channels attractive therapeutic targets in the treatment of endocrine and cardiovascular diseases.


Assuntos
Trifosfato de Adenosina , Humanos , Mutação , Receptores de Sulfonilureias/genética
19.
Hum Mol Genet ; 30(24): 2513-2523, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34274964

RESUMO

The resting QT interval, an electrocardiographic (ECG) measure of ventricular myocardial repolarization, is a heritable risk marker of cardiovascular mortality, but the mechanisms remain incompletely understood. Previously reported candidate genes have provided insights into the regulatory mechanisms of the QT interval. However, there are still important knowledge gaps. We aimed to gain new insights by (i) providing new candidate genes, (ii) identifying pleiotropic associations with other cardiovascular traits, and (iii) scanning for sexually dimorphic genetic effects. We conducted a genome-wide association analysis for resting QT interval with ~9.8 million variants in 52 107 individuals of European ancestry without known cardiovascular disease from the UK Biobank. We identified 40 loci, 13 of which were novel, including 2 potential sex-specific loci, explaining ~11% of the trait variance. Candidate genes at novel loci were involved in myocardial structure and arrhythmogenic cardiomyopathy. Investigation of pleiotropic effects of QT interval variants using phenome-wide association analyses in 302 000 unrelated individuals from the UK Biobank and pairwise genome-wide comparisons with other ECG and cardiac imaging traits revealed genetic overlap with atrial electrical pathology. These findings provide novel insights into how abnormal myocardial repolarization and increased cardiovascular mortality may be linked.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Eletrocardiografia , Feminino , Estudo de Associação Genômica Ampla/métodos , Genômica , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
20.
JRSM Cardiovasc Dis ; 10: 20480040211023664, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211707

RESUMO

The electrocardiogram (ECG) is a commonly used clinical tool that reflects cardiac excitability and disease. Many parameters are can be measured and with the improvement of methodology can now be quantified in an automated fashion, with accuracy and at scale. Furthermore, these measurements can be heritable and thus genome wide association studies inform the underpinning biological mechanisms. In this review we describe how we have used the resources in UK Biobank to undertake such work. In particular, we focus on a substudy uniquely describing the response to exercise performed at scale with accompanying genetic information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...